The curse of dimensionality for the class of monotone functions and for the class of convex functions

نویسندگان

  • Aicke Hinrichs
  • Erich Novak
  • Henryk Wozniakowski
چکیده

We study the integration and approximation problems for monotone or convex bounded functions that depend on d variables, where d can be arbitrarily large. We consider the worst case error for algorithms that use finitely many function values. We prove that these problems suffer from the curse of dimensionality. That is, one needs exponentially many (in d) function values to achieve an error ". ∗This author was supported by the DFG Heisenberg grant HI 584/3-2. †This author was partially supported by the DFG, SPP 1324 ‡This author was partially supported by the National Science Foundation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Partial second-order subdifferentials of -prox-regular functions

Although prox-regular functions in general are nonconvex, they possess properties that one would expect to find in convex or lowerC2  functions. The class of prox-regular functions covers all convex functions, lower C2  functions and strongly amenable functions. At first, these functions have been identified in finite dimension using proximal subdifferential. Then, the definition of prox-regula...

متن کامل

Inequalities of Ando's Type for $n$-convex Functions

By utilizing different scalar equalities obtained via Hermite's interpolating polynomial, we will obtain lower and upper bounds for the difference in Ando's inequality and in the Edmundson-Lah-Ribariv c inequality for solidarities that hold for a class of $n$-convex functions. As an application, main results are applied to some operator means and relative operator entropy.

متن کامل

The Fekete-Szegö problem for a general class of bi-univalent functions satisfying subordinate conditions

In this work, we obtain the Fekete-Szegö inequalities for the class $P_{Sigma }left( lambda ,phi right) $ of bi-univalent functions. The results presented in this paper improve the recent work of Prema and Keerthi [11].

متن کامل

Hermite-Hadamard Type Inequalities for MφA-Convex Functions

This article deals with the different classes of convexity and generalizations. Firstly, we reveal the new generalization of the definition of convexity that can reduce many order of convexity. We have showed features of algebra for this new convex function. Then after we have constituted Hermite-Hadamard type inequalities for this class of functions. Finally the identity has been revealed for ...

متن کامل

Higher order close-to-convex functions associated with Attiya-Srivastava operator

In this paper‎, ‎we introduce a new class$T_{k}^{s,a}[A,B,alpha‎ ,‎beta ]$ of analytic functions by using a‎ ‎newly defined convolution operator‎. ‎This class contains many known classes of‎ ‎analytic and univalent functions as special cases‎. ‎We derived some‎ ‎interesting results including inclusion relationships‎, ‎a radius problem and‎ ‎sharp coefficient bound for this class‎.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of Approximation Theory

دوره 163  شماره 

صفحات  -

تاریخ انتشار 2011